
"Crystallizing" FORTRAN
AD-A250 162 Dong- Yuan Cheni

Department of Computer Science
Yale University

New Haven, CT 06520

Ron Y. Pinter

IBM Scientific Center

Technion City
Haifa 32000, Israel

Shlomit S. Pinter

D T IC Technion Israel Institute of Technology
ELECTE Haifa 32000, Israel

0 November 26, 1991

Abstract

The parallelization techniques embodied in source to source tools (that are customarily

applied to FORTRAN programs) and in compilers for high level functional languages

(such as Crystal) can and should be combined under a'common framework. Tradition-

ally, the former tools target shared memory machines, whereas the latter - distributed

memory (or data parallel) machines. One effect of the combination is the ability to run

sequential FORTRAN programs on a whole new class of machines; it also provides a

good way to separate between different parallelization concerns and deal with them at

the appropriate level.

We describe the design and an implementation of a prototypical system that enables such

a combination. The design is modular and extendible; its implementation entails, among

other challenges, bridging the gap between imperative and functional program semantics.

We have developed several techniques that solve these and other fundamental problems,

and present them within this concrete framework. Experimental results, as achieved

by the prototype and as presented hereby, are most encouraging and substantiate the

usefulness of this approach.

92-10006
foz public rv-e.3ae or.d sole; its i n iih iI

diFsttbutioat is ~~ d.d

'Corresponding Author: Dong-Yuan Chen, 51 Prospect Street, New Haven, CT 06511, (203)432-4781,
A en-dong-p anOc. Yale. edt1 .

92 4 2(054

1 Introduction

Crystal is a very high level, functional language intended (mostly) for scientific programming of
data parallel machines [4]. Several novel compilation techniques (6, 12, 13, 14] were developed for

mapping Crystal programs to machines that support (especially) distributed memory in various
ways. Prototype compilers for the Intel iPSC/2 and Thinking Machine's CM-2 that employ these

techniques have been built (and are being further developed), enabling the effective and convenient

programming of numeric algorithms for such machines.

The scientific-engineering community, however, still uses FORTRAN as its most common language

(both for existing and new code). There is a large body of work [1, 2, 15, 16, 17] on how to analyze
and subsequently parallelize FORTRAN programs. Most efforts in this area were directed at vector

and shared-memory type machines, but also some work for distributed-memory machines has been

emerging recently [3, 9, 19].

We argue that it would be beneficial to combine the parallelization and optimization technologies

of the FORTRAN compilers and preprocessors with those of the various Crystal back-ends so as to

achieve a more powerful language processing capability. For example, a path going from ordinary

FORTRAN 77 programs all the way to a wide variety of data parallel machines, including those
supported by the Crystal compilers, will become available.

In this paper we present and justify the design of a system that realizes such a combination, discuss

various issues of program representation and transformation that arise in such a design, describe the

techniques that are required and used to implement it (with emphasis on the novel ones), and report
some preliminary experimental results. The hard part is to bridge the gap between the imperative

semantics that is inherent to FORTRAN programs and the functional style of Crystal which exposes
the desired data parallelism.

From a broader perspective, this work addresses the formidable challenge of putting together several
compilation techniques that are both different in nature and complementary in function into one

framework. In particular, most parallelization techniques as applied to FORTRAN programs are

performed at a source to source level, whereas the Crystal optimizations are (as are most other com-
piler optimizations) conducted at a lower level of representation. Providing a common optimization

platform for this purpose, even in its present prototypical form, may prove beneficial by applying

it to other domains as well; our experience sheds some light on the issue of how high level and low

level optimizations and program representations can be combined.

We have demonstrated our design and techniques by implementing a prototype system that uses

Parascope [111 (from Rice University) to generate FORTRAN code with explicit parallel control

structures, which is translated into Crystal by our method and then compiled by the experimental i

Crystal compiler for the iPSC/2. The running times of the resulting programs were only slightly

longer than those of Crystal programs that were written for the same application (using the same

algorithm and the same Crystal compiler). This indicates that our approach is indeed sound and
could lead to a significant capability with further improvements.

The rest of this paper is organized as follows: Section 2 outlines the structure of the tool, discusses its

merits, and lists the technical problems to be solved. Then, in Section 3, we present the FORTRAN
Statement A per telecon Gary Koob

ONR/Code 1133
Arlington, VA 22217-5000 / '

NWW 5/5/92 \,

to Crystal translator along with the various novel transformation techniques and the intermediate

representations that are used. Section 4 describes some extensions to the basic scheme, followed

by a report on the implementation and experimental results in Section 5. We conclude with some

topics for further research.

2 Method, Issues, and Assumptions

Our approach is illustrated in Figure 1. One first applies a parallelization tool, e.g. KAP, PTRAN,

ParaScope, Parafrase, Tiny, or VAST-2, to obtain a new program in a parallel dialect of FOR-

TRAN; the output of the parallelization tool also contains information (in some form) about the

dependence relations between statements. The second step is the novel part: we have to supply

a translator that converts programs in an imperative, relatively low level (even with the added

parallel constructs) programming language, to a functional language such as Crystal (our actual

target is a textual, Crystal-like intermediate representation). Both dependence information from

the parallelization tool and the FORTRAN source code are used by the translator; our objective is

to generate correct Crystal code that is amenable to effective optimization by the Crystal compiler.

Finally, the translator's output is handed over to the appropriate Crystal compiler for one of the

target machines.

Soreto source

Parallelization Tools

* FORTRAN programs with parallel constrcuts

• dependence information

Translator

* Crystal representation
* FORTRAN source code and other information

Crystal Compiler

CM-2 iPSC/2 iPSC/2/i860

Figure 1: System Overview

Major Advantages. We see several advantages to this design. First, input programs can be

written in FORTRAN 77 ("dusty decks" or new programs), but they can also be written in a

parallel dialect (and then the process starts with the second stage). In the latter case, the program

might already include the programmer's insights on, say, how to distribute an array, which will be

passed on and translated to the Crystal intermediate representations. The normal feature in the

Crystal compiler for automatically determining data distribution is bypassed.

Second, this design is both modular and portable in the sense that the intermediate forms are source

programs (a parallel dialect of FORTRAN and a textual Crystal-like representation). Thus both the

parallelizing tool (the "front-end") and the Crystal compiler (the "back-end") can be replaced by

other than the original tools if deemed necessary. Furthermore, additional parallelization techniques,

2

such as the extraction of idioms [16], can be applied to the intermediate form, allowing further
exploitation of Crystal constructs, such as scan and reduction.

Third, this design separates the shared memory from the distributed memory considerations. In the
front-end we operate in a shared memory model; all the data distribution issues, such as communi-
cation synthesis, are deferred to the Crystal back-end.

Key Issues. Two key issues must be addressed to realize this design. First, what should the
intermediate Crystal representation look like? How does this form preserve only the information
that is essential to the correctness of the original programs without imposing unnecessary constraints

on the execution order? Our design was influenced by the way control and data dependence relations
of the sequential programs are maintained by the various parallelizing tools.

Second, how to translate imperative programs in multiple assignment form to a functional repre-
sentation in single assignment form? In order to bridge this gap we have to (at least) eliminate
output- and anti-dependences (per [20]). The single static assignment (SSA) form [8] can be used

to represent the target program, but since the form as presented in the literature does not support
arrays it must be generalized.

Finally, to simplify the initial design we made several assumptions that allowed us to concentrate
on the main issues, as follows:

Assumptions. The input FORTRAN programs include only assignment statements, DO state-
ments, and IF statements'. There are no subroutine calls in the programs; function calls are allowed,
but functions must have no side effects. We also assume that the loop bounds of DO statements are
constants and the strides have been normalized to 1 in all DO loops. The array references on the
left hand side of assignment statements are assumed to have indices of the form I + C where I is a
scalar variable and C is a constant. Some of these assumptions could be lifted by employing auxiliary

data structures or by fine-tuning the translation algorithm.

We produce only interval domains (and Cartesian products thereof) in Crystal, thus focusing on
rectangular arrays which are the only data structure available in FORTRAN. Also, we generate only
"pure" Crystal code, i.e. there is no attempt to produce meta-language constructs that contain

explicit parallelization directives.

We ignore the fact that those portions of the Crystal code that reside on the same node of the target
machine must be translated back (by the compiler) into an efficient sequential program, so it might
be advantageous to keep around the original FORTRAN code. This, again, could be remedied by
using some auxiliary structures, or - alternatively - by encapsulating some designated inner loops
as functions (after strip mining) and leaving them untranslated. This topic and the issues it raises
(parameter passing etc.), however, are beyond the scope of this paper.

IFor programs that are well structured the preprocessor can eliminate all GOTOs and turn them into structured
constructs.

3

3 The Translator

As indicated above, the crux of the matter is to provide a translator from (a parallel dialect of)
FORTRAN to Crystal. In this section we describe the intermediate Crystal representation to which
we translate, present the translation algorithm, and demonstrate it on a simple example.

3.1 The Form of the Intermediate Crystal Representation

The intermediate Crystal representation to which we translate a FORTRAN program is a subset of
the Crystal language augmented with some auxiliary data structures. Its intention is to capture both
the control and data dependence relations that are present in FORTRAN programs in a uniform

form. Thus all FORTRAN variable definitions are translated into Crystal data fields [10], which are
(in this context) functionally defined arrays. Auxiliary data structures are used to keep information
about expanded indices, formal index mappings, subroutines, etc.

In general, each data field definition has the form

a(Ij, ... , In) : D = "

Pm T J

where the pi's are Boolean expressions called guards, the ri's are arbitrary expressions, and D = D, x
x D. is an n-dimensional domain which is the Cartesian product of interval domains D1 , D2 , ..., Dn.

(I,..., I,) is called the formal index of a; each I ranges over the interval domain Di. The value
of a(i1 , ... , in) is the value of expression r where k is the smallest integer such that pk is true (and
undefined if all are false). We can imagine a as an n-dimensional array defined over the domain D
whose value is defined by the conditional expression on the right hand side.

The intermediate representation has some basic properties: it is in single assignment form, each
variable in the representation is defined only once, and the execution order is implicitly imposed
by the data dependence relations between variable definitions. To demonstrate this, consider the
following FORTRAN program segment.

Si: do i = 1, 10
S2: a-2*b+c
S3: if i > 5) then
S4: b=a+ I
SS: endif
se: enddo

Here S2 is control dependent on S1, and S4 is control dependent on both S1 and S3. There is
also an anti-dependence from S2 to S4, flow-dependences from S2 to S4 and from S4 to S2, and
output-dependences from S2 to S2 and from S4 to S4. The corresponding Crystal representation (as
produced by our translation algorithm) would be

4

a(i): [1..101 = {1 < i < 10 -* 2 x b(i - 1) + c}

b(i) [L..10] = < i < 10 eise - b(i -1)

The control dependence relations in the FORTRAN program appear in the Crystal representation as
the guards of data field definitions. The flow-, anti- and output-dependence relations are transformed
into flow-dependence relations in the Crystal representation. Note that the scalar variables a and b in
the FORTRAN program are transformed into one dimensional arrays in the Crystal representation;
this is, in essence, scalar expansion along the time index. Since we know which dimension is expanded

by the translation process, this information is passed on to the Crystal compiler using an auxiliary
structure so that the original dimension could be restored during the code generation stage (if

necessary).

The structure of our representation imposes some limitations on the translation process (as indicated
in the previous section). For example, not all of the valid array references on the left hand sides of
assignment statements can be translated into the formal index form in the Crystal representation.
Some of them could be translated but would greatly increase the complexity of the translation
algorithm and the complexity of the resulting representations. Also, GOTO statements, subroutine
calls, and COMMON statements have no direct translation in the Crystal representation. Some of these
limitations could be compensated for by using auxiliary data structures (see Section 4).

3.2 The Translation Algorithm

The translation algorithm divides the given parallel FORTRAN program into segments and makes
each correspond to a single time step along a newly created time index in the Crystal representation.
Then, as long as we can translate the variables defined in each segment into a single-assigned Crystal
representation, multiple definitions of a variable in different segments turn into single-assignment
form by the use of the new time index. We call this process time-dimension expansion because it
expands the original time dimension of each variable by one to turn it into single-definition form.
Thus, (a) will be translated into (b) in the following example.

x = expi (in program segment 1) x(t) : [1,T] = { if t == 1 then expi
I I t == 2 then exp2

x = exp2 (in program segment 2) I I ...

(a) (b)

There are two main questions: first, how to divide the program into segments so that the statements
in each segment can be translated into a corresponding Crystal representation in which each variable

is defined only once, and - second - how do we translate the resulting segments as above. Since

our algorithm follows the preprocessing stage, we can assume that the DO loops of the given program
have been classified into sequential loops and parallel loops2 . Then, the dividing lines between

2 Pecall that a DO loop can be parallel if there are no loop carried data dependences imposed by the loop between
statements inside the loop body; otherwise it is a sequential loop.

5

segments are the start and end points of sequential loops. Specifically, we partition the program
hierarchically into segments at the DO statements3 and at the corresponding ends of the do blocks.
Thus a basic segment contains at the top level only assignment, IF, and DOALL statements, but no
DO statements. All other segments are compound.

To address the second question, we use three techniques for generating single-assignment form. A
multiple definition of a variable resulting from a loop carried output dependence is resolved by time
index expansion (which is similar to scalar expansion). Thus, such a variable will have at least
as many time index dimensions as its nesting depth. Other multiple definitions in a segment are
resolved by controlled substitution (a technique to be explained shortly) which Lakes care of anti
dependence relations and branching execution, when possible. Lastly, merging definitions between
segments (when substitution is impossible) is performed by a renaming-like approach which is done
by adding another time index dimension. Note that within a basic segment we use only controlled
substitution and merging; these techniques will be exemplified in what follows.

Controlled substitution prevents illegal forward substitution in the presence of anti dependences and
branching executions. Let S be a statement on which there exists at least one output dependent
statement; then a controlled substitution is performed on every statement Sj which is flow dependent
on Si. In order to match the correct values, two tags - [new] and [old] - are used by the substitution
mechanism.

We demonstrate the technique by a brief example. It is important to note that we refer here
only to non-loop carried dependences. In this example, x is multiply defined in (a) and with the
tags the program (conceptually) looks like (b). Applying the substitution on x, following the flow
dependences from S1 to S3 and from S1 to S4, we get the intermediate Crystal representation in
(c). Note that since there is no flow dependence on z (from S2 to S3 or S4) no substitution need be
performed on z. Finally, this program segment is merged with the preceding segment with the time
index technique, resulting in the representation shown in (d).

Si: x - expl(z) Si: x[nev] - expl(z[oldJ)
S2: z - 5 S2: z[nev] - 5
S3: y M x * c S3: y[nev] - x[old] * c[old]
S4: x - x + exp2 S4: x[new) = x[old' + exp2

(a) Original Program. (b) Program with variable tags.

z(t) : [1,2] { if t I1 then old value
z[new] - 5 1I t -=2 then S I
y[new] - expl(z[old]) * c[old) y[nev] = expl(z(i)) * c[old]
x[nev] - expl(z[old) + exp2 x[new] - expl(z(1)) + exp2

(c) Intermediate Crystal representation. (d) After the merge on z.

The translation algorithm comprises two procedures that call each other recursively: the main
entry point, Fortran-to.Crystal, handles compound segments, and the other - basic segments.

During the translation, each program segment becomes a set of data field definitions in the Crystal
representation where each variable that is defined in the program segment corresponds to a data

3 From now on, we use DOALL to refer to a parallel loop and DO to refer to a sequential loop.

6

field definition. For convenience of presentation, we call the set of data field definitions resulting
from translating a segment or a portion thereof a definition unit (DU). The algorithm is described
as follows:

PROCEDURE Fortran.toCrystal (program)
DU := empty set;
WHILE not end of program DO

IF current statement is a do statement THEEN
DUI FortrantoCrystal(loop body of do statement);
DU2 TimeDimension-Expansion(DU1, loop index, loop bounds);

ELSE
DU2 BasicSegentTraslationo);

ENDIF
DU := TimeDimensionMerge(DU, DU2);

ENDWILE;
RETURJ(DU);

END Fortran.toCrystal;

PROCEDURE BasicSegmentTraslation()
DU := empty set;

WHILE (not end of program) AID
(current statement is not a do statement) DO

I := current statement;

IF (X is an assignment statement) THEN
DUI := AssignmentStatementTransformation(X);

ELSE IF (I is an if statement) THEN
DU2 Fortran-toCrystal(the then part of X);
DU3 : Fortran-toCrystal(the else part of X);
DUI IfStatementTransformation(DU2, DU3, if-predicate);

ELSE /* X must be a doall statement */
DU2 := Fortran-toCrystal(the loop body of X);
DU1 : DoallStatementTransformation(DU2, loop index,

loop bound);
EIDIF

DU := Merge-andSubstitute(DU. DU);

ENDWHILE

RETURN(DU);
END BasicSegment-Translation;

The algorithm proceeds incrementally. It first tries to extract and translate the next program
segment into a DU; then the new DU is merged with the DU that has been accumulated thus far.

Should there be multiple definitions of the same data field in the new DU and old DU, the time-
dimension expansion technique mentioned above is applied to merge them into a single data field
definition. This operation continues until the end of the program is reached. If the next statement is

a DO statement, Fortran-to.Crystal is called recursively to translated the loop's body into a DU;
otherwise, Hasic-SegmentTransformation is called to translate the next basic segment into a DU.

BasicSegment.raslation works by translating into a DU one statement of a basic segment at

a time and merging it with the previously obtained DU. Multiple definitions of data fields in the
existing DU and the new one are resolved by applying the techniques described above. This process

7

continues until it reaches the end of the program, the end of a loop's body, or a new DO statement.
The statements which are in the then or else part 4 of an IF statement or in the loop body of a DOALL
statement are tieated as programs and are translated into DUs by calling Fortran-to.Crystal recur-
sively. The function of AssignmentStat ementTransforaation, L.Statement Transformation,
Doall.StateentTransforzation, and the two merge procedures, is illustrated by a simple exam-
ple in the next section.

3.3 A Simple Example

Let us use an example to further illustrate how the translation algorithm works. Consider the
following FORTRAN program with doall constructs:

1 real u(32), v(32), psi(32)
2 doall i = 1, 30
3 u(i + 1) = (psi(i + 1) - psi(i)) / 100000
4 enddo
5 u(1) = u(32)
6 do j = 1, 20
7 if (j .gt. 10) then
8 doall i = 1, 31
9 u(i) = 0.5 * u(i + I)
10 enddo
11 else
12 doall i = 1, 32
13 u(i) = vCi) + uCi)
14 enddo
1 endif
16 enddo

Lines 2-5 form a basic segment and lines 7-15 form a potentially compound segment. In the ba-
sic segment, the statement in line 3 is first translated into DU1 which consists of one data field
definition 5 , as follows:

DU, u(SO) : [1..32] f SO == i + I - (Psi(SO) - psi(SO - 1))/100000

1 else - U(SO)

The array index on the left hand side of the assignment statement is translated into the formal index
SO in the data field definition. The domain of the formal index SO is determined from the array
declaration of u. All references to variable i on the right hand side of the assignment statement
have to be replaced by an expression using formal index SO. After the formal index transformation,
variable i appears only in the guard of the conditional expression in DUI.

Next, DU1 and the DOALL loop at line 2 are combined and translated into DU2 :

DU2 : u(SO) : [1..32] = f2 < SO < 31 - (psi(SO) - psi(SO - 1))/100000

I ~else - t4SO)

Here the loop index i of the DOALL loop has been transformed into an interval [1..30] which is
defined by its loop bounds. Since the DOALL loop contains no loop carried data dependences, this
transformation preserves the semantics of the original loop.

4 We take some liberties with FORTRAN syntax here in order to simplify the discussion.
-The tags described in the previous section are not shown in the data field definition.

8

DU 3 is the representation of the statement at line 5:

U : u('s0) : [L.2] SO == 1- u(32)
I [else -- u(SO)

Since DU 2 and DU 3 are in a basic segment, forward substitution is applied to merge them into
a single definition unit DU4 . Those instances of u in DU2 and DU3 which refer to the data field
u defined in DU 2 are replaced by the data field definition of u in DU2 . After substitution, the

definition of u in DU 2 can be removed to obtain the new DU4 :

So == 1 21:5 32 <531 - (pai(3 2) - psi(3 1))/1 00 000

DU.: u(SO) : [1..32]= ese - u(32)
else . 2 < So < 31 -. (psi(SO) - psi(SO - 1))/100000

else - U(SO)

DU4 could be further simplified by removing redundant guards and definitions. After the simplifi-

cation, we get DU5 :

fSO == I - u(32)
DU5 : u(SO) : [1..32] = 2 < SO < 31 - (psi(SO) - psi(SO - 1))/100000

else - u(SO)

By applying similar transformations, the segment in lines 7-15 is translated into DU 6 . Note that the
if-then-else statement has been translated into a conditional expression in DU6 . The predicate
of the IF statement is now a guard in the conditional expression.

r 10 SO < 31 - 0.5 * u(SO + 1)
DUe: u(S) : [1..32] = > else - u(SO)

else -. v(SO) + "(SO)

Since the do loop at line 6 is a sequential loop, scalar expansion is applied to each data field definition
in DU6 . A time dimension with domain [1..20] is added to data field u and all references to u are

changed accordingh, to reflect the new time dimension. Using scalar expansion, DU 6 is transformed

into DU 7 .

TO > 1 eSe -0.5 u(+ - 1 T-1
DO',: u(S, TO) : (..32] x [1..20] = 7 >10O - O else -. (S0, TO - 1)

else -. v(SO) + u(SO, TO - 1)

Finally, DU 5 and DU17 are merged along the new time dimension. DU 5 is treated as a single time
step and is merged with DU7 which is treated as a time interval. The merging process involves

scalar expansion of some data field and time domain shifting to join two disjoint time intervals into

one time interval. DU 8 is the final Crystal representation of the given FORTRAN program:

Su(SO, TO) : [1..32] x [0..201 =
SO = I -- u(32,TO - 1)

To =- 0 -* 2 < SO < 31 - (psi(SO) - psi(SO - 1))/100000

DUO else - u(SO, TO - 1)1O > ee SO <- 31- ' 0.5*u(SO +1,TO -1)
To >= 1 - else - u(SO , TO - 1)

else - v(SO) + u(SO, TO - 1)

4 Extensions to the Basic Scheme

Some of the assumptions on the input FORTRAN programs can be relaxed by the use of auxil-
iary data structures and modifications to the translation algorithm. In this section, some possible
extensions to the Crystal representation and to the algorithm itself are presented to improve the
translation process and to deal with a wider class of programs.

Simplification of the Intermediate Representation. A more compact and clean intermediate

representation both improves the performance of the translation algorithm and helps the Crystal
compiler generate better code; thus it is desirable to simplify the data field definitions to eliminate
redundancy. A simple evaluator is used in the translator to evaluate the guards of conditional
expressions under a set of known constraints. The initial constraints are derived from the domains
of formal indices; if the values of Boolean expressions can be determined under these constraints,
the guards or the whole conditional expressions are reduced to simpler forms. When one conditional
expression is nested within another, it is evaluated under the new constraint which is derived from
the initial constraint and the Boolean expressions guaraing the conditional expression.

Consider the following data field definition in (a). The initial constraint derived from the index
domain of u is C1 =rl < S < 32. The Boolean expression rl < S < 101 is evaluated under the initial
constraint C1. Since the result could be either true or false, the value of r < S < 10' cannot be
determined under C 1. The evaluator then tries to evaluate the conditional expression under the guard
rl < S < 10'. The new constraint C2 is C1 nrl < S < 10' = rl < S < 10'. The Boolean expression
rl < S < 31' is found to be always true under C2 , therefore the whole conditional expression can be

reduced to the value a. Similarly, the else part of the top level conditional expression .' evaluated

under the constraint rl 1 < S < 32' and redundant Boolean expressions removed. The data field
definition after simplification is shown in (b).

I~~~~ < (0 S < 31 - a

u(S) : 1..32] = { else -. b 1 < S < 10 - a{ 20 < S < 32 - c u(S) :[L..32]= 20 < S - c
else - d else-, d

(a) (b)

Translation of Formal Indices. In the translation process, the array indices cn the right hand
sides of assignment statements have to be translated into formal indices in data field definition.

Consider the statement ra(2 * j, t +j) = i - j. To translate it into Crystal, we have to solve the
equations "SO = i * jP and rS1 = i + j such that i and j on the right hand side could be written as
expressions of SO and Si.

In general, solving equations to translate the array indices into the formal indices of data field is
difficult and even impossible in some cases. Even when the solution can be found, it will result in
complicated expressions which will hurt the performance of the generated parallel programs. Instead
of solving these equations, auxiliary data structures could be used to capture the relation between

10

i, j and SO, Si. These auxiliary data structures could be passed on to the Crystal compiler together
with the Crystal representations such that the original assignment statement could be restored in
the code generation stage of the Crystal compiler. Thus the statement ra i * j, i + j) = i - could
be translated into the following data field definition

a(SOS) :D- (SO ==i*j) and (Sl == i+j) - $fun.i-$fun.j{ else - a(SO, SI)

where $fun = (SO = i * j, SI = i + j) is an auxiliary data structure. The translation algorithm
has to be modified to deal with thi: kind of data field definition. This way, the restriction on array
indices could be relaxed.

Subroutine Calls. Suppose that the parallelizing tools are able to extract the interprocedural
data flow information in the preprocessing stage, and that the information about which variables
are referenced and which variables are updated in the subroutines is available to the translator. We
could then translate each subroutine call in FORTRAN into a single time step along some time
dimension in Crystal. Consider the subroutine ADD in (a) which takes arrays a and b, adds them
together, and stores the result in array a. One possible translation into Crystal is shown in (b).

real a(100), b(100) r
call ADD(a, b) a(S,T) : D= (T == t') - ADD(a(*, t - 1), b(*)).a

(a) (b)

Properties associated with the subroutine ADD, e.g. variables referenced or updated in the subroutine
and even the source code of the subr,',tine, could be stored in auxiliary data structures. However, the
problems of how to integrate the subroutine information into the Crystal compiler and to generate
correct parallel programs remain to be investigated.

5 Implementation and Results

A prototype of the FORTRAN to Crystal translator was implemented in T [18]. It by itself consists
of a lexical analyzer, a parser, the translation module, a simplifier, and a code generator. We used
Parascope [11] from Rice University as the source to source FORTRAN parallelization tool, and the
Crystal compiler for the Intel iPSC/2, a hypercube based machine.

A weather prediction program, based on shallow-water equations and consisting of about 120 lines of
FORTRAN code, was used to both test and benchmark the translator. It was processed successfully
by our prototype translator and was also translated by hand, thereby producing two Crystal pro-
grams. These programs were compiled by a prototype Crystal compiler for the iPSC/2 (followed by
some hand tuning, because the Crystal compiler is still under development). The exact same com-
munication pattern was generated for the two programs, which is quite remarkable; the difference
between the computation times (not including the communication time, which should be the same)

11

of the two programs was about 25% in favor of the hand written program. Further experimentation
to compare the performance differences between auto-translated and hand-translated versions of this
and other Crystal programs is underway. We are already witnessing a certain reduction of the above
gap by enabling certain advanced optimizations in the Crystal compiler.

The automatically translated Crystal program was run both on the iPSC/2 at Yale and the iPSC/2/i860
at Oak Ridge National Labs. Table 1 shows the speedup and efficiency as a function of the number of
processors when program size and the number of iterations are fixed. Note that the rather impressive
speedups are largely due to the simple and well structured nature of the application program.

[Procs I Total(ms) I Tc,, Th,ft Mlops [Speedup J Eff.
1 331289 331289 0 0.39 1.00 1.00
2 167953 164114 3924 0.76 1.97 0.98
4 83375 78454 4995 1.53 3.97 0.99
8 44208 39924 5286 2.89 7.49 0.94

16 24134 20308 4425 5.30 13.72 0.85
32 13208 10178 3319 9.68 25.08 0.78
64 7486 5314 2326 17.07 44.25 0.69

(a) The iPSC/2 at Yale. Problem size: 128x128, 120 iterations.

Procs Total(ms) Tc., I T~h,le I Mflops i Speedup [Eftf
1 180516 180516 0 2.8 1.0 1.002 91715 90529 1225 5.5 1.9 0.95

4 47186 45537 1691 10.8 3.8 0.95
8 22049 20481 1630 23.2 8.2 1.03

16 11803 10369 1507 43.3 15.3 0.96

32 6583 5219 1426 77.7 27.4 0.86
64 3987 2684 1361 128.2 45.3 0.71

(b) The iPSC/2/i860 at Oak Ridge National Labs. Problem size: 256x256, 120 iterations.

Table 1: The speedup and efficiency using a different number of processors when problem size and
the number of iterations are fixed. Tcomp is the computation time and Thi, is the communication
time plus the time for buffer copying (both measured in msec). The results for a single processor on
the iPSC/2/i860 are extrapolated due to memory constraint.

6 Conclusions and Further Research

The approach of efficient compilation of sequential FORTRAN programs for data parallel machines
using both shared memory parallelization and Crystal compilation techniques was proposed. Novel
and interesting solutions to the variety of technical problems that arise with such a scheme were
presented, and the feasibility was demonstrated with surprisingly good results (at least for a certain
class of FORTRAN programs). Certainly, more experimentation is necessary to validate this further,
and we hope to report the results in the full paper, if accepted.

Several issues remain to be investigated: In order to support a more general class of FORTRAN

12

programs, the intermediate Crystal representation should be augmented. The translation algorithm
should be improved to generate efficient and compact Crystal programs. Extraction of program

idioms like the scan and reduce operations could be added into the translator in the future to
achieve better performance. Program transformation techniques on Crystal source programs and
optimization techniques for the Crystal compiler also deserve further research effort to generate

parallel code with more parallelism and higher performance.

On a more general level, can all the techniques that are involved in this process be unified under one
cohesive framework, i.e. work on the same intermediate representation? Also, is such a "closed"

design really better than our "open" approach? Finally, can some of these methods and techniques

be applied to different settings of language pairs and target machines?

Acknowledges

Generous support from the Office of Naval Research under Contract N00014-91-J-1559 and the
National Science Foundation under Grant CCR-8908285 are gratefully acknowledged. We would
like to thank C.-Y. Lin for conducting the experiment on the iPSC/2 and iPSC/2/i860.

References

[1] F. E. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN
analysis system for multiprocessing. Journal of Parallel and Distributed Computing, 5(5):617-
640, October 1988.

[2] R. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector form. ACM
Trans. on Programming Languages and Systems, 9(4):491-542, October 1987.

[3] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data
partitioning and distribution. In Fifth Distributed Memory Computing Conference, April 1990.

[4] M. Chen, Y.-I. Choo, and J. Li. Crystal: Theory and pragmatics of generating efficient parallel
code. In Parallel Functional Languages and Compilers, chapter 7, pages 255-305. ACM Press
and Addison-Wesley, 1991.

[5] M. C. Chen, Y.-I. Choo, and J. Li. Compiling parallel programs by optimizing performance.
The Journal of Supercomputing, 2(2):171-207, October 1988.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method
of computing static single assignment form. In Sixteenth Annual Symposium on Principles of
Programming Languages, pages 25-35. ACM, January 1989.

[71 S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the For-
tran D programming system. Technical Report TR91-154, Dept. of Computer Science, Rice
University, March 1991.

[8] M. Jacquemin and J. A. Yang. Crystal reference manual version 3.0. Technical Report
YALEU/DCS/TR-840, Dept. of Computer Science, Yale University, Jan. 1991.

[9] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Interactive parallel programming using the
parascope editor. IEEE Trans. on Parallel and Distributed Systems, 2(3):329-341, July 1991.

[10] J. Li and M. Chen. Compiling communication-efficient programs for massively parallel machines.
IEEE Transaction on Parallel and Distributed Systems, July 1991.

13

[11] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory
machines. Journal of Parallel and Distributed Computing, October 1991.

[12] L.-C. Lu and M. C. Chen. Subdomain dependency test for massive parallelism. In Supercom-
puting'90, pages 962-972, November 1990.

[13] D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputer. Communications
of the ACM, 29(12):1184-1201, Dec. 1986.

[14] S. S. Pinter and R. Y. Pinter. Parallelizing programs using idioms. In Eighteenth A CM Sym-
posium on Principles of Programming Languages, pages 79-92, January 1991.

[15] C. D. Polychronopoulos, D. J. Kuck, and D. A. Padua. Execution of parallel loops on parallel
processor systems. In International Conference on Parallel Processing, pages 519-527. IEEE,
1986.

[16] J. A. Rees, N. I. Adams, and J. R. Meehan. The T manual, fifth edition, October 1988.

[17] P.-S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers. PhD thesis,
Carnegie Mellon University, May 1989. CMU-CS-89-148.

[18] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge, MA, 1989.

14

